Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (2025)

Biologia plantarum 60:1-12, 2016|DOI:10.1007/s10535-015-0562-6

Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks

V. Sarropoulou1,*, C. Chatzissavvidis2, K. Dimassi-Theriou1, I. Therios1
1Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
2Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece

Effects of four amino acids, L-asparagine, L-cysteine, L-citrulline, and L-glutamine in different concentrations (0, 0.5, 1, and 2 mg dm-3) combined with 2 mg dm-3 indole-3-butyric acid, on in vitro rooting and biochemical constituents of cherry rootstocks CAB-6P (Prunus cerasus L.) and Gisela 6 (P. canescens × P. cerasus) were investigated. In CAB-6P, root number and root fresh mass (FM) were maximum at 0.5 mg dm-3 cysteine. All amino acids reduced root length in CAB-6P and root number as well as root FM in Gisela 6. In Gisela 6, 0.5 mg dm-3 asparagine or 2 mg dm-3 glutamine reduced root length. In CAB-6P, 100 % rooting was achieved in the control and with 1 and 2 mg dm-3 cysteine or 1 mg dm-3 citrulline. In Gisela 6, the rooting percentage was maximum (76.92 %) with 0.5 mg dm-3 asparagine. Callus FM in CAB-6P was the greatest at 1 mg dm-3 and in Gisela 6 at 2 mg dm-3 citrulline. Callusing was 100 % in the majority of treatments for CAB-6P and 92.31 % for Gisela 6 with 0.5 or 2 mg dm-3 citrulline. Cysteine, citrulline, and glutamine diminished chlorophyll content in Gisela 6 whereas in CAB-6P all four amino acids hardly affected it. Carotenoid and porphyrin content in CAB-6P was decreased due to asparagine (0.5 or 1 mg dm-3). Porphyrin content in CAB-6P was also reduced by adding 0.5 or 1 mg dm-3 cysteine or 2 mg dm-3 citrulline. In Gisela 6, all amino acids decreased carotenoid and porphyrin content. In CAB-6P, all treatments except 0.5 mg dm-3 glutamine or 2 mg dm-3 asparagine increased leaf sucrose content. In roots, both sucrose and proline content were increased only at 1 mg dm-3 cysteine whereas in leaves only 0.5 mg dm-3 asparagine caused a 3-fold increase in proline content. A decrease in root proline in CAB-6P was observed due to asparagine, citrulline, or glutamine. In Gisela 6, decreased leaf sucrose and proline content was recorded at 2 mg dm-3 cysteine. All amino acids did not alter root sugar content remarkably whereas root proline content was raised by adding 0.5 mg dm-3 glutamine or 1 mg dm-3 cysteine.

Keywords: amino acids; carotenoids; chlorophyll; micropropagation; porphyrins; proline; rhizogenesis; sugars
Subjects: asparagine; cysteine; citrulline; glutamine; in vitro rooting; amino acids; carotenoids; chlorophyll; proline; sucrose; cherry rootstock

Received: January 4, 2015; Revised: June 13, 2015; Accepted: July 7, 2015; Published: January 1, 2016 Show citation

ACSAIPAPAASAHarvardChicagoIEEEISO690MLANLMTurabianVancouver

Sarropoulou, V., Chatzissavvidis, C., Dimassi-Theriou, K., & Therios, I. (2016). Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks. Biologia plantarum,60(1),1-12. doi:10.1007/s10535-015-0562-6

Download citation

  • BibTeX (.bib)
  • Bookends (.ris)
  • EasyBib (.ris)
  • EndNote (.enw)
  • EndNote 8 (.xml)
  • ISI WoS (.isi)
  • Medlars (.medlars)
  • Mendeley (.ris)
  • MODS (.xml)
  • Papers (.ris)
  • RefWorks (.txt)
  • RefManager (.ris)
  • RIS (.ris)
  • MS Word (.xml)
  • Zotero (.ris)
  • Open full article

    References

    1. Abou El-Nil, M.M.: The effects of amino acid nitrogen on growth of date palm callus. - In: Proceedings of the 2nd Symposium on Date Palm. Pp. 59-65. King Faisal Univ., Al-Hassa 1989.
    2. Aguilar, R., Sanchez de Jimenez, E.: Amino acid pools and protein synthesis in germinating maize embryos. - Plant Cell Rep. 3: 193-195, 1984. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (2)Go to original source...
    3. Agulló-Antón, M.A., Sánchez-Bravo, J., Acosta, M., Druege, U.: Relation between light conditions and carbohydrate levels during the storage of carnation cuttings: effects on adventitious roots formation. - In: Proceedings of 5th International Symposium on Adventitious Root Formation; From Cell Fate Flexibility to Root Meristem Determination and Biomass Formation. Pp. 115-116. Alcalá de Henares, Madrid 2008.
    4. Ahkami, A.H, Melzer, M., Haensch, K.T., Franken, P., Hause, B., Druege, U., Hajirezaei, M.R.: Possible involvement of carbohydrate metabolism in adventitious root formation in Petunia hybrida cuttings. - In: Proceedings of 5th International Symposium on Adventitious Root Formation; From Cell Fate Flexibility to Root Meristem Determination and Biomass Formation. Pp. 81-82. Alcalá de Henares, Madrid 2008.
    5. Amin, A.A., Gharib, F.A.E., El-Awadi, M., Rashad, E.S.M.; Physiological response of onion plants to foliar application of putrescine and glutamine. - Sci. Hort. 3: 353-360, 2011. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (3)Go to original source...
    6. Arce, P., Balboa, O.: Seasonality in rooting of Prosopis chilensis cuttings and in vitro micropropagation. - Forest Ecol. Manage. 40: 163-173, 1991. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (4)Go to original source...
    7. Arulanantham, A.R., Rao, M., Terry, N.: Limiting factors in photosynthesis. - Plant Physiol. 93: 1466-1475, 1990. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (5)Go to original source...
    8. Belonogova, M.A., Raldugina, G.N.: Root regeneration from cotyledon explants of fibre flax (Linum usitatissimum) and their subsequent rooting. - Russ. J. Plant Physiol. 53: 501-506, 2006. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (6)Go to original source...
    9. Carvalho, D.C., Silva, A.L.L., Schuck, M.R., Purcino, M., Tanno, G.N., Biasi, L.A.: Fox grape cv. Bordô (Vitis labrusca L.) and grapevine cv. Chardonnay (Vitis vinifera L.) cultivated in vitro under different carbohydrates, amino acids and 6-benzylaminopurine levels. - Braz. Arch. Biol. Technol. 56: 191-201, 2013. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (7)Go to original source...
    10. Cohen, J.D., Bialek, K.: The biosynthesis of indole-3-acetic acid in higher plants. - In: Crozier, A., Hillman, J.R. (ed.): The Biosynthesis and Metabolism of Plant Hormones. Pp. 165-181. Cambridge University Press, Cambridge 1984.
    11. Correa, L.R., Stein, R.J., Fett-Neto, A.G.: Adventitious rooting of detached Arabidopsis thaliana leaves. - Biol. Plant. 56; 25-30, 2012. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (8)Go to original source...
    12. Coruzzi, G., Last, R.: Amino acids. - In Buchanan, B., Gruissem, W., Jones, R. (ed.): Biochemistry and Biology of Plants. Pp. 358-410. American Society of Plant Physiologists, Maryland 2000.
    13. De Filippis, L.F., Hampp, R., Ziegler, H.: The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena growth and pigments. - Z. Pflanzenphysiol. 101; 37-47, 1981. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (9)Go to original source...
    14. Dolatabadian, A., Jouneghani, R.S.: Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. - Not. Bot. Hort. Agrobot. Cluj 37: 165-172, 2009.
    15. El-Shiaty, O.H., El-Sharabasy, S.F., Abd El-Kareim, A.H.; Effect of some amino acids and biotin on callus and proliferation of date palm (Phoenix dactylifera L.) Sewy cultivar. - Arab. J. Biotechnol. 7: 265-272, 2004.
    16. Faye, M., Ourry, A., Saidali-Savi, C., Dargent, R., Boucaud, J., David, A.: Effects of glutamine and K-glutamate on assimilation of [15N]-nitrate during auxin treatment for root formation in vitro (Pinus pinaster). - Physiol. Plant. 76; 277-282, 1989. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (10)Go to original source...
    17. Filner, P.: Regulation of nitrate reductase in cultured tobacco cells. - Biochem. biophys. Acta 118: 299-310, 1966. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (11)Go to original source...
    18. Fukunaga, Y., King, J.: The effect of L-amino acid on the growth and nitrate reductase activity in cultured cells of Datura innoxia. - Plant. Sci. Lett. 24: 45, 1982. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (12)Go to original source...
    19. George, E.F., Hall, M.A., De Klerk, G.J.: Plant Propagation by Tissue Culture. 3rd Ed. - Springer, Dordrecht 2008. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (13)Go to original source...
    20. Grimes, H.D., Hodges, T.K.: The inorganic NO3:NH4 ratio influences plant regeneration and auxin sensitivity in primary callus derived from immature embryos of indica rice (Oryza sativa L.). - J. Plant Physiol. 136: 362-367, 1990. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (14)Go to original source...
    21. Groot, C.C., Marcelis, L.F., Boogaard, R., Kaise, W.M., Lambers, H.: Interaction of nitrogen and phosphorus nutrition in determining growth. - Plant Soil 248: 257-268, 2003. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (15)Go to original source...
    22. Haissig, B.E.: Metabolic process in adventitious rooting of cuttings. - In Jackson, B.M. (ed.): New Root Formation in Plants and Cuttings. Pp. 141-189. Martinus Nijhoff, Dordrecht 1986. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (16)Go to original source...
    23. Hamasaki, R.M., Purgatto, E., Mercier, H.: Glutamine enhances competence for organogenesis in pineapple leaves cultivated in vitro. - Braz. J. Plant Physiol. 17: 383-389, 2005. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (17)Go to original source...
    24. Haroun, S.A., Shukry, W.M., El-Sawy, O.: Effect of asparagine or glutamine on growth and metabolic changes in Phaseolus vulgaris under in vitro conditions. - Bioscience Res. 7: 1-21, 2010.
    25. Haq, I.U., Soomro, F., Parveen, N., Dahot, M.U., Mirbahar, A.A.: Certain growth related attributes of micropropagated banana under different salinity levels. - Pak. J. Bot. 43; 1655-1658, 2011.
    26. Jabeen, F., Shahbaz, M., Ashraf, M.: Discriminating some prospective cultivars of maize (Zea mays L.) for drought tolerance using gas exchange characteristics and proline contents as physiological markers. - Pak. J. Bot. 40: 2329-2343, 2008.
    27. James, D.J.: Adventitious root formation 'in vitro' in apple rootstocks (Malus pumila) I. Factors affecting the length of the auxin-sensitive phase in M.9. - Physiol. Plant. 57: 149-153, 1983a. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (18)Go to original source...
    28. James, D.J.: Adventitious root formation 'in vitro' in apple rootstocks (Malus pumila) II. Uptake and distribution of indole-3-acetic acid during the auxin sensitive phase in M.9 and M.26. - Physiol. Plant. 57: 154-158, 1983b. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (19)Go to original source...
    29. Kakkar, R.K., Rai, V.K.: Effect of exogenous amino acid application on rhizogenesis in hypocotyl cuttings of Phaseolus vulgaris L. - Curr. Sci. 2: 82-84, 1988.
    30. Kamada, H., Harada, H.: Influence of several growth regulators and amino acids on in vitro organogenesis of Torenia fournieri Lind. - J. exp. Bot. 30: 27-36, 1979. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (20)Go to original source...
    31. Kavi Kishor, P.B.: Aromatic amino acid metabolism during organogenesis in rice callus culture. - Physiol. Plant. 75; 395-398, 1989. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (21)Go to original source...
    32. Kazemi, M., Gholami, M., Asadi, M., Aghdasi, S., Almasi, M.; Response of carnation (Dianthus caryophyllus L.) to salicylic acid and glutamine. - Asian J. Biochem. 7: 158-164, 2012. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (22)Go to original source...
    33. Khan, A.A., McNeilly, T., Collins, C.: Accumulation of amino acids, proline, and carbohydrates in response to aluminium and manganese stress in maize. - J. Plant Nutr. 23: 1303-1314, 2000. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (23)Go to original source...
    34. Kim, Y.W., Moon, H.K.: Enhancement of somatic embryogenesis and plant regeneration in Japanese larch (Larix leptolepis). - Plant Cell Tissue Organ Cult. 88: 241-245, 2007. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (24)Go to original source...
    35. Kumar, S.P., Kumari, B.D.R.: Effect of amino acids and growth regulators on indirect organogenesis in Artemisia vulgaris L. - Asian J. Biotechnol. 2: 37-45, 2010. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (25)Go to original source...
    36. Lichenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembrane. - Methods Enzymol. 148; 350-382, 1987. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (26)Go to original source...
    37. Liu, Y., Tong, X., Hui, W., Liu, T., Chen, X., Li, J., Zhuang, C., Yang, Y., Liu Z.: Efficient culture protocol for plant regeneration from petiole explants of physiologically mature trees of Jatropha curcas L. - Biotechnol. Biotechnol. Equip. 2015. http://dx.doi.org/10.1080/13102818.2015.1013308. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (27)Go to original source...
    38. Locy, R.D., Wehner, T.C.: Cucumber shoot tip growth on 9 nitrogen sources in in vitro culture. - Cucurbit Gen. Cooperative Rep. 5: 10-11, 1982.
    39. Lokhande, A.A., Gaikwad, D.K.: Effect of plant growth regulators on photosynthetic pigments and products of two onion varieties. - Indian J. Adv. Plant Res. 1: 15-18, 2014.
    40. Macháčková, I., Zažímalová, E., George, E.F.: Plant growth regulators I: Introduction; auxins, their analogues and inhibitors. - In: George, E.F., Hall, M.A., De Klerk, G.J. (ed.): Plant Propagation by Tissue Culture. Pp. 175-204. Springer, Dordrecht 2008.
    41. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (28)Go to original source...
    42. Nasholm, T., Persson, J.: Plant acquisition of organic nitrogen in boreal forests. - Physiol. Plant. 111: 419-426, 2001. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (29)Go to original source...
    43. Nunes, E.N., Montenegro, I.N.A., Fernandez, Y.T.D., Nansimento, D.A.M., Nansimento, R., Alvez, C.A.B., Souto, J.S.: Biochemical responses of maize (Zea mays L.) cultivars subjected to nitrate and glutamine fertilizers. - Afr. J. agr. Res. 9: 3663-3671, 2014.
    44. Orlikowska, T.: Effect of amino acids on rooting of apple dwarf rootstocks in vitro. - Biol. Plant. 34: 39-44, 1992. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (30)Go to original source...
    45. Pedrotti, E.L., Allemand, C.J., Doumas, P., Cornu, D.: Effect of autoclaving amino acids on in vitro rooting response of wild cherry shoot. - Sci. Horticult. 57: 89-98, 1994. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (31)Go to original source...
    46. Plummer, D.T.: Practical Biochemistry. 3rd Ed. - McGraw-Hill Book Company, New York 1987.
    47. Polanuer, B., Sholi A., Demina, N., Rumiantseva, N.; Determination of glutamine, glutamate acid and pyroglutamate acids using high-performance liquid chromatography on dynamically modified silica. - J. Chromatogr. 594: 173-178, 1992. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (32)Go to original source...
    48. Porra, R.J., Thompson, W.A., Kriedelman, P.E.: Determination of accurate extraction and simultaneously equation for assaying chlorophyll a and b extracted with different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. - Biochim. biophys. Acta 975: 384-394, 1989. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (33)Go to original source...
    49. Pritsa, T.S., Voyiatzis, D.G.: The in vitro morphogenetic capacity of olive embryo explants at different developmental stages, as affected by L-glutamine, L-arginine and 2,4-D. - J. biol. Res. 1: 55-61, 2004.
    50. Ranga Rao, G.V., Prasad, M.N.V.: Plant regeneration from the hypocotyl callus of Acacia auriculiformis /multipurpose tree legume. - J. Plant Physiol. 137: 625-627, 1991. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (34)Go to original source...
    51. Sauerbrey, E., Grossmann, K., Jung, J.: Ethylene production by sunflower cell suspensions. - Plant Physiol. 87: 510-513, 1988. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (35)Go to original source...
    52. Shahriari, A.M., Bagheri, A., Sharifi, A., Moshtaghi, N.; Efficient regeneration of 'Caralis' Alstroemeria cultivar from rhizome explants. - Not. Sci. Biol. 4: 86-90, 2012. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (36)Go to original source...
    53. Shahsavari, E.: Impact of tryptophan and glutamine on the tissue culture of upland rice. - Plant Soil Environ. 57: 7-10, 2011. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (37)Go to original source...
    54. Shanhani, P.S.: Nitrogen effect on callus induction and plant regeneration of Juniperus excelsa. - Int. J. Agr. Biol. 5: 419-422, 2003.
    55. Shibaoka, H., Mitsuhashi, M., Shimokoriyama, M.: Promotion of adventitious root formation by heliangine and its removal by cysteine. - Plant Cell Physiol. 8: 161-170, 1967. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (38)Go to original source...
    56. Shohael, A.M., Akanda, M.A.L., Parvez, S., Mahfuja, S., Alam, M.F., Islam, F., Joarder, N.: Somatic embryogenesis and plant regeneration from immature embryo derived callus of inbred maize (Zea mays L.). - Biotechnology 2: 154-161, 2003. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (39)Go to original source...
    57. Siwach, P., Chanana, S., Gill, A.R., Dhanda, P., Rani, J., Sharma, K., Rani, H., Kumari, D.: Effects of adenine sulphate, glutamine and casein hydrolysate on in vitro shoot multiplication and rooting of Kinnow mandarin (Citrus reticulata Blanco). - Afr. J. Biotechnol. 11: 15852-15862, 2012. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (40)Go to original source...
    58. Sotiropoulos, T.E., Dimassi, K.N., Therios, I.N.: Effects of L-arginine and L-cysteine on growth, and chlorophyll and mineral contents of shoots of the apple rootstock EM 26 cultured in vitro. - Biol. Plant. 49: 443-445, 2005. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (41)Go to original source...
    59. Sudarsana Rao, G.V, Chandra, R., Polisetty, R.: Role of amino acids in evolution of ethylene and methane, and development of microshoots in Cajanus cajan. - Biol. Plant. 44: 13-18, 2001. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (42)Go to original source...
    60. Taha, H.S., El-Bahr, M.K., Seif-El-Nasr, M.M.: In vitro studies on Egyptian Catharanthus roseus L.G. Don. IV; Manipulation of some amino acids as precursors for enhanced of indole alkaloids production in suspension cultures. Aust. J. basic appl. Sci. 3: 3137-3144, 2009.
    61. Troll, W., Lindsley, J.: A photometric method for determination of proline. - J. biol. Chem. 215: 655-660, 1955. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (43)Go to original source...
    62. Tsuji, M., Kuwano, E., Saito, T., Eto, M.: Root growthpromoting activities of N-acetyl-L-proline derivatives. - Biosci. Biotech. Biochem. 56: 778-782, 1992. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (44)Go to original source...
    63. Watanabe, S., Katsumi, K., Yuji, I., Sasaki, S.: Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. - Plant Cell Tissue Organ Cult. 63: 199-206, 2001.
    64. Welander, T.: Influence of nitrogen and sucrose in the medium and of irradiance of the stock plants on root formation in Pelargonium petioles grown in vitro. - Physiol. Plant. 43; 136-141, 1978. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (45)Go to original source...
    65. Wintermans, J.F.G.M., De Mots, A.: Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. - Biochim. biophys. Acta 109: 448-453, 1965. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (46)Go to original source...
    66. Yang, C.M., Chang, K.W., Yin, M.H., Hung, H.M.: Methods for the determination of the chlorophylls and their derivatives. - Taiwania 43: 116-122, 1998. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (47)Go to original source...
    67. Zhang, H., Jennings, A., Barlow, W.P., Forde, G.B: Dual pathways for regulation of root branching by nitrate. - Plant Biol. 96: 6529-6534, 1999. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (48)Go to original source...
    68. Zhu, M., Xu, A., Yuan, M., Huang, C.H., Yu, Z., Wang, L., Yu, J.: Effects of amino acids on callus differentiation in barley anther culture. - Plant Cell Tissue Organ Cult. 22: 201-204, 1990. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (49)Go to original source...

    Return to the content

    Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks (2025)

    References

    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Edwin Metz

    Last Updated:

    Views: 6497

    Rating: 4.8 / 5 (58 voted)

    Reviews: 89% of readers found this page helpful

    Author information

    Name: Edwin Metz

    Birthday: 1997-04-16

    Address: 51593 Leanne Light, Kuphalmouth, DE 50012-5183

    Phone: +639107620957

    Job: Corporate Banking Technician

    Hobby: Reading, scrapbook, role-playing games, Fishing, Fishing, Scuba diving, Beekeeping

    Introduction: My name is Edwin Metz, I am a fair, energetic, helpful, brave, outstanding, nice, helpful person who loves writing and wants to share my knowledge and understanding with you.